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Abstract

The new generation of satellite sensors such as the MODerate resolution Imaging

Spectroradiometer (MODIS) will be able to detect and characterize global

aerosols with an unprecedented accuracy.  The question remains whether this

accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol

radiative forcing at the top of the atmosphere. We narrow the discussion to cloud

free direct forcing.  Satellite remote sensing detects aerosol with the least amount

of relative error when aerosol loading is high.  Satellites are less effective when

aerosol loading is low.  We use the monthly mean results of two global aerosol

transport models to simulate the spatial distribution of smoke aerosol in the

Southern Hemisphere during the tropical biomass burning season.  This spatial

distribution allows us to determine that 87-94% of the smoke aerosol forcing at

the top of the atmosphere occurs in grid squares with sufficient signal to noise

ratio to be detectable from space.  The uncertainty of quantifying the smoke

aerosol forcing in the Southern Hemisphere depends on the uncertainty

introduced by errors in estimating the background aerosol, errors resulting from

uncertainties in surface properties and errors resulting from uncertainties in

assumptions of aerosol properties.  These three errors combine to give overall

uncertainties of 1.2 to 2.2 Wm-2 (16-60%) in determining the Southern

Hemisphere smoke aerosol forcing at the top of the atmosphere. Residual cloud

contamination uncertainty is not included in these estimates.  Strategies that use

the satellite data to derive flux directly or use the data in conjunction with
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ground-based remote sensing and aerosol transport models can reduce these

uncertainties.
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1.0 Introduction

The role of aerosol forcing remains one of the largest uncertainties in

estimates of man’s impact on the global climate system (IPCC, 1996).  Man-made

aerosols may cool the earth directly by scattering radiation back to space

(Charlson et al., 1992; Lacis and Mischenko, 1995 ).  They may cool the earth

indirectly by increasing the number of CCN in clouds, and thereby increasing the

number of cloud droplets and the reflectance back to space (Twomey, 1977).

Man-made aerosols may also influence the radiative balance in other ways

including absorption of solar radiation and changing atmospheric stability

profiles and subsequently cloud formation (Hansen et al., 1997). Satheesh and

Ramanathan (2000) using measurements in INDOEX showed that understanding

radiative forcing at the top of the atmosphere is not enough to represent the

aerosol effect on climate. Absorbing aerosol, e.g. biomass burning (Martins et al.,

1998), regional pollution over the Indian Ocean (Satheesh et al., 1999) and dust

(Alpert et al., 1998) can affect atmospheric heating rates, evaporation and cloud

formation; thus affecting climate even without directly changing the energy

balance at the top of the atmosphere. However, the top of atmosphere energy

forcing remains an important unknown quantity in the equation and forms the

focus of this paper.

Although much progress has been made in the past decade in terms of

characterizing aerosol properties, identifying their extent and determining their
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role in the radiative balance, too much uncertainty remains to make definitive

statements.  Narrowing the uncertainty is vital, yet how do we proceed?

One school of thought suggests that remote sensing by satellite sensors

will provide the data necessary to narrow these uncertainties.  On the other

hand, satellite sensors are not a panacea to the problem. Although the new

generation of sensors has excellent accuracy compared to the heritage

instruments of the past (Chu et al., 1998; Tanré et al., 1999), they still have

measurement limitations (King et al., 1999; Kaufman et al., 1997; Tanré et al.,

1997).  In clean, pristine regions the absolute magnitude of the uncertainty in the

aerosol retrieval becomes comparable in magnitude to the signal itself.

Much of the important aerosol radiative forcing may occur within the

noise level of the accuracy of the remote sensing measurements.  Man-made

aerosols can be transported far from the source regions (McGovern et al., 1999;

Perry, 1999). Biomass burning aerosols traced from the continents were observed

in the remote southern ocean during PEM-Tropics (Stoller et al., 1999).  Although

concentrations were dilute, the background aerosol is also of small magnitude.

The imported man-made aerosol could effectively double the aerosol loading in

remote regions (Stoller et al., 1999), and if over a large enough area, may play a

large role in the global aerosol forcing. If much of the aerosol forcing is occurring

at very low magnitudes of aerosol concentrations, present satellite remote

sensing will miss it.

Another limitation of remote sensing is that satellites see the atmosphere
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as it is now, not the changes due to human activity.  They will measure aerosol

that includes both a man-made component (industrial origin, biomass burning

origin) and a natural component (desert dust, sea salt). Remote sensing cannot

separate the aerosol measurement into components, except in the coarsest of

manners by separating by aerosol size.  Knowing the magnitude of the

background aerosol signal is a prerequisite before determining the magnitude of

the man-made perturbation to the signal, a pre-requisite that satellites may not

meet.

This study, we hope, is a first step in developing a strategy to best-use

satellite data to estimate the global aerosol direct forcing.  We start with the pair

of aerosol retrieval algorithms developed for the EOS-MODIS instrument

(Kaufman et al., 1997; Tanré et al., 1997), and use the uncertainties inherent in

these algorithms as representative of remote sensing in general.  To simulate the

distribution of aerosol we use simulated data from aerosol transport models.  In

order to avoid the complications of multiple types of man-made aerosols we turn

to the distribution of biomass burning aerosol in the Southern Hemisphere

during the season when smoke aerosol dominates the man-made contribution to

the aerosol loading.

This study is not an intercomparison of global transport models.  It is not

an estimation of global aerosol forcing.  This study, based on model simulations,

is an exercise to determine whether satellite remote sensing can live up to the

high expectations surrounding its development.
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2.0  Uncertainty of MODIS aerosol retrievals

The MODIS procedure for the remote sensing of aerosol consists of two

separate algorithms.  One derives aerosol over land (Kaufman et al., 1997) and

makes use of dark targets identified with the mid-IR channels (Kaufman et al.,

1997) and dynamical aerosol models (Remer and Kaufman, 1998; Remer et al.,

1998; Tanré et al., 2000).  The other derives aerosol over the ocean by inverting

the multi-spectral radiance field (Tanré et al., 1997).

In both methods, the retrievals will be affected by errors associated with

estimating the surface reflectance, instrument calibration, and assumptions of

aerosol properties that are not retrieved in the algorithm. We describe the

uncertainties in the retrievals as:

∆τ = ±0.05±0.20 τ (Land -Kaufman et al., 1997) (1a)

∆τ = ±0.05±0.05 τ (Ocean -Tanré et al., 1997) (1b)

where τ is the aerosol optical thickness and ∆τ is the uncertainty. Equations 1

were derived from theoretical sensitivity studies in which a data set of aerosol

characteristics are input into a radiative transfer code then top of atmosphere

radiances are calculated.  These calculated radiances were then used as input in

the MODIS retrieval algorithm to see how close the algorithm could return the

original aerosol data set.  A variety of aerosol characteristics were tested

(Kaufman et al., 1997; Tanré et al., 1997).  The uncertainties in Equations 1 pertain
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to individual retrievals.  We refer to Equations 1 as LOW accuracy.

Figure 1 shows the Southern Hemisphere distribution of retrieval signal-

to-noise ratio (τ/∆τ) based on Equations 1 and applied to the simulated August

monthly mean results of the model of Tegen et al. (1997). Also shown in Figure 1

is the model derived August monthly mean smoke optical thickness.  We see

signal-to-noise ratio is high over the parts of the continents where optical

thickness is high and largest in the ocean regions just offshore and downwind of

the smoke source regions.  However, Figure 1a shows the large extent of the

Southern Hemisphere in which the uncertainty of our retrievals is comparable in

magnitude to the magnitude of the signal itself (τ/∆τ~1).

We find that Equations 1 can over predict the error when the retrieval

algorithms are applied to actual field conditions.  King et al., (1999) report that

for the specific examples of urban/industrial pollution over the Atlantic

(TARFOX) and biomass burning smoke over South America (SCAR-B) the

retrieval errors can be reduced to

∆τ= ±0.05±0.15 τ    (Land) (2a)

∆τ= ±0.01±0.05 τ    (Ocean) (2b)

We refer to Equations 2 as HIGH accuracy.  In other situations with different

aerosol types and surface backgrounds, errors may be larger than those observed

during these specific campaigns. However many of the errors may be random, as

shown in the TARFOX and SCAR-B field validations.  This creates the possibility

that the average value of an ensemble of retrievals will actually be more accurate
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than Equations 1 suggest.

Equations 1 and Equations 2 offer two measures of the errors expected

from the MODIS retrievals.  Equations 1 are a conservative estimate based on

theory as applied to individual retrievals.  As we see from field experiments in a

well-characterized environment, the uncertainties can decrease significantly.

Equations 2, based on these field experiments, offer an alternative measure of

uncertainty for individual retrievals that may be optimistic, but is certainly

achievable in some regions. In other regions it may represent the errors

associated with weekly or monthly averages.  Preliminary validation of actual

MODIS retrievals, using the AERONET global network as “ground truth”

(Holben et al. 1998), suggests that the uncertainty does indeed fall between

equations 1 and 2 (Chu et al., 2001; Ichoku et al. 2001; Remer et al., 2001).

In the following we shall use two aerosol transport models to simulate the

distribution in the Southern Hemisphere of biomass burning aerosol and natural

maritime and mineral aerosol. The domain includes all longitudes south of 12oN,

as pictured in Fig. 1.  Model 1 is given by Tegen et al. (1997) and Model 2 by

Ghan et al. (2001abc). We shall use the results to answer the following questions:

•  For a given error in the satellite retrieval, what is the fraction of the biomass

burning aerosol forcing that is detectable by the satellite (e.g. above a given

threshold)?
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•  How accurately can satellites be used to detect man-made radiative forcing

above background aerosol?

•  Using the spatial distributions of the aerosol from Model 1 and Model 2, and

the equations for the LOW and HIGH estimates of the satellite retrievals,

what is the overall error in assessing the aerosol forcing (radiative effects

above the background)?

3.0 Model and observational data

To simulate the distribution of smoke aerosol in the Southern Hemisphere

we turn to the published results of Tegen et al. (1997)

(http://gacp.giss.nasa.gov/transport/). The model is based on a general

circulation model that generates its own dynamics.  It is meant to simulate

climatology, not weather. The “weather”, day to day variation, in the model is

too noisy to be meaningful and only monthly mean values are useful. This is

different than assimilation models that are driven by input winds and other

parameters. Assimilation models may have more accurate day to day forecasts

but are not practical simulators of climatology.   The data consist of monthly

mean values of optical thickness distributed over the globe on a 4 by 5 degree

grid and divided by aerosol types that include mineral dust (Tegen and Fung,

1995), sea salt (Tegen et al., 1997), sulfate (Chin et al., 1996) and carbonaceous

aerosol (Liousse et al., 1996).  The carbonaceous aerosol is further divided into

organic and black carbon categories.  We assume that the sum of organic and
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black carbon aerosol optical thickness in the Southern Hemisphere represents the

optical thickness contribution from biomass burning and are man-made

contributions.

Tegen et al. (1997) compare their model results with monthly mean optical

thickness measurements taken from AErosol RObotic NETwork (AERONET)

(Holben et al., 1998) radiometers at various global locations.  At stations near the

source regions of Southern Hemisphere biomass burning, the model appears to

severely underestimate the optical thickness.  Figure 2 further illustrates the

under prediction.  The model produces monthly mean values of optical thickness

no greater than 0.25, while values 2-7 times larger are observed by the

AERONET stations.  The model’s under prediction is most serious during the

height of the biomass burning season in August and September, but also

relatively high in October.  The model’s prediction of optical thickness is fairly

accurate in the pre-burning time period of June and July suggesting that the

background aerosol is well-predicted.  The under prediction of smoke seems to

be worse for the stations in South America and less severe for Mongu, the only

African station in this analysis.

Figure 2 also plots August mean values for a second model (Ghan et al.

2001abc), more fully described in Section 7.0.  The two models use similar

information to determine source strength, but employ very different aerosol

processes and transport mechanisms.  The second model also under predicts

smoke optical thickness near sources, in some cases by a strikingly similar
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amount.  The fact that these two very different models both under predict optical

thickness near biomass burning  sources strongly suggest that estimates of source

strength is low.

Estimating global source strength of biomass burning is more difficult

than estimating where the sources are located or in transporting the aerosol from

the source areas.  We can identify biomass burning regions using satellite fire

counts (Setzer and Pereira, 1991; Prins et al., 1998), but quantification of the

amount of aerosol emitted must be compiled from production inventories and

requires a number of assumptions (Liousse et al., 1996).  Furthermore, the global

inventories used in the transport model of this study are based on statistics from

the 1975-1980 period (Liousse et al., 1996; Hao et al., 1990).  Emission strengths

could certainly have increased from the years the statistical inventories were

compiled in the late 1970s to the mid 1990s when the AERONET sunphotometer

data were acquired.

On the other hand we have no reason to mistrust the models’ ability to

transport the smoke away from the source regions.  Transport in Model 1 (Tegen

et al., 1997) is provided by the Lagrangian GRANTOUR model and includes

transport, transformation and removal of aerosol (Walton et al., 1988).  The

NCAR Community Climate Model (CCM1) provides the wind and precipitation

fields.  Thus we expect the model well-represents the geographical distribution

of smoke aerosol optical thickness, while underestimating the magnitude. In

support of this assumption, the spatial pattern of smoke aerosol resembles
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published distributions from previous satellites (Husar et al., 1997; Herman et al.,

1997) and preliminary observations from MODIS (Remer et al., 2001). The

similarity is apparent despite the fact that the observations are for a particular

year while the model is seeking to determine climatological conditions.

 To compensate for the Model 1’s underestimation of smoke magnitude,

we boost the model-derived smoke optical thickness by multiplicative factors

derived from Figure 2 and specific to month.  Only the smoke optical thickness

component of the model is boosted.  Because Figure 2 suggests the

underestimation is more severe for South America than for Africa, we use two

sets of multiplicative factors.  For August the factors are 3.5 for South America

and 2.5 for the rest of the world. For September and October the factors are 8.0

and 4.0, for South America and the remainder of the world, respectively.

4.0  Fraction of the aerosol forcing above a given satellite detection threshold  

We use the results of Tegen et al. (1997) (Model 1) to determine how much

of the direct aerosol forcing occurs above the noise levels of the MODIS aerosol

retrieval (Equations 1 and 2).  To do so we calculate histograms of the aerosol

optical thickness provided by Tegen et al. (1997).  We include only Southern

Hemisphere and tropical grid squares, south of latitude 12o N.  Before summing

the data in the histograms the monthly mean optical thickness values are

adjusted twice.  First by the multiplicative values discussed in Section 3 to
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compensate for the underprediction of smoke sources.  The second is by

expanding each monthly mean value into a lognormal distribution with standard

deviation equal to 0.50.  The second adjustment is to account for the variability of

daily values measured by satellite that are not included in the monthly means.

The value of 0.50 for standard deviation was calculated by analyzing several

AERONET stations in biomass burning regimes (Figure 3).  A normal

distribution gives similar results to the lognormal distribution.

The optical thickness frequency histogram (fi ) is  defined as:

(3)

where the bins are defined as intervals of optical thickness and Ni is the number

of area-weighted grid squares in bin i.  In the single scattering approximation

smoke aerosol forcing is directly proportional to τ  (Penner, 1992; Hobbs, 1997).

Although smoke can be too thick near source regions for the single scattering

approximation to hold, for most of the domain the smoke is sufficiently thin. The

regions of high smoke loading are obviously well above the satellite detection

threshold, and the simplification is sufficient to calculate cumulative histograms.

Thus, the histogram representing smoke aerosol forcing (Fi) will be given by
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(4)

where τi is the optical thickness in bin i.

The difference between Equation 3 and 4 is that Equation 4 gives greater

weight to grid squares with higher optical thickness.  Because smoke forcing is

proportional to optical thickness, the grid squares at higher optical thickness will

contribute proportionally more to the hemispheric smoke forcing.  Thus we rely

on Equation 4, the weighted histogram, to calculate smoke forcing.  The constant of

proportionality that relates optical thickness to forcing cancels in the formulation

of Equation 4.  Additional details on the Penner et al. (1992) and Hobbs et al.

(1997) approximation and the values of the constant of proportionality are given

in Section 6.

Figure 4 is a cumulative histogram of the smoke aerosol forcing in the

Southern Hemisphere divided into land and ocean components.  If we

conservatively take noise thresholds for the smoke optical thickness of τ=0.05

over ocean and τ = 0.10 over land and assume background aerosol can be well-

estimated, then 81% of the smoke forcing over ocean and 92% over land will be

above noise levels.  Because the land represents 20% of the area of our domain
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but 43% of the smoke forcing (area weighted by τ), 86% of the smoke forcing in

the Southern Hemisphere will be detectable by the MODIS algorithms.

5.0 Estimating background conditions from satellite

Satellites see the atmosphere as it is now.  Remote sensing will measure

the total aerosol consisting of both the natural aerosol and the aerosol due to

human activity.  Remote sensing cannot effectively determine the man-made

component of the aerosol optical thickness without assuming a value for the

‘background’ optical thickness and subtracting the background component from

the total.  Estimating the ‘background’ or natural aerosol component introduces

much of the error in using satellites to determine the global aerosol forcing by

human activity.  We attempt to quantify the uncertainty in making this estimate

of background conditions.

One method to estimate background conditions during the biomass

burning season is to observe total aerosol optical thickness from satellite in a

month with no burning, and designate these conditions as ‘background’ in a

month with burning.  We can test the uncertainty in this method by using the

Tegen et al. (1997) results.  The background aerosol in the Tegen et al. (1997)

results for August is the sum of the non-smoke categories of aerosol

(dust+salt+sulfates).  Which month’s total aerosol optical thickness

(dust+salt+sulfates+smoke) best represents the non-smoke aerosol optical

thickness of August?  We test this month by month in a root mean square error
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(rmse) sense for every model grid box, for all latitudes south of 12o N.  The

results indicate that the minimum difference between monthly mean total

aerosol optical thickness and August background aerosol occurs for the month of

May with a rmse of 0.027 in optical thickness units.

Other methods of estimating background aerosol that include information

from ground-based sensors and other auxiliary data can improve our estimates.

For example, AERONET data taken from “background” marine stations show a

very consistent lower envelope aerosol optical thickness (Kaufman et al., 2001).

These data suggest that we can make estimates of background aerosol optical

thickness to within 0.01 or less.  We will use the value of 0.027 as an upper bound

and the AERONET-assisted value of 0.01 as a lower bound on the uncertainty

associated with estimating the magnitude of the background aerosol.

6.0 Estimate of the error in satellite sensing of aerosol radiative forcing

We examine error introduced into the aerosol retrieval algorithm from

four sources:

(1) The uncertainty in estimating background aerosol optical thickness. We will

use the value of ±0.027 as an upper bound and ±0.01 as a lower bound, as

discussed in Section 5.0.

(2) The uncertainty in estimating surface reflectance.  This appears mainly as the

offset in Equations 1 and 2, although depending on geometry there is some τ
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dependence.  We will use the theoretical values of ∆τ =±0.05 due to uncertainty

in the surface reflectance for both land and ocean as a conservative upper bound,

as discussed in Section 2.0.  We will also use the LOW value of ∆τ =±0.01 for over

the ocean as discussed in Section 2.0.

(3) The uncertainty in estimating the aerosol model including the aerosol phase

function, refractive index and single scattering albedo.

(4) The uncertainty introduced by instrument calibration errors.

Both error sources (3) and (4) are dependent on the magnitude of the optical

thickness.  We combine them into one term (∆τidep) and calculate the value from

the forcing histograms (Equation 4).

(5)

 where  ∆τidep is defined by ±0.05τi (ocean) and ±0.20τi (land), using theoretical

estimates, or ±0.15τi for land, using empirical estimates as discussed in Section

2.0.  These values are identical to the second terms of Equations 1 and 2.

Clouds introduce additional uncertainty in the retrievals.  Cloud

uncertainty is difficult to quantify, and for this study, ignored.  Cloud issues are

further discussed in Section 8.0.
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Table 1 lists the error estimates for the four sources of error with the two

τ�dependent  sources combined.  The different types of errors are combined in

the rmse sense.  The total Southern Hemisphere values are calculated by

weighting the land errors by 43% and the ocean errors by 57% because the land

makes up 43% of the smoke aerosol forcing in this August data set.  The first

three columns of Table 1 express ∆τ in optical thickness units.  The analysis

suggests that MODIS will determine smoke aerosol forcing in the Southern

Hemisphere to within 0.07 in optical thickness units.

Following Penner et al. (1992) smoke aerosol forcing, F, can be expressed

as

 (6)

assuming no absorption.  S is the solar flux incident at the top of the atmosphere,

T is the atmosphere clear-sky transmittance, Ac is the fraction of clouds, Rs is the

surface albedo, B is the fraction of radiation backscattered to space and τ is the

smoke optical thickness.  Thus we see that the smoke forcing is directly

proportional to τ and if we assume that all other parameters remain constant

then the uncertainty in smoke aerosol forcing is directly proportional to
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∆F=C∆τ (7)

Penner et al. (1992)’s values of C are 44 Wm-2 for ocean and 30 Wm-2 land.  The

difference between ocean and land is due to differences in surface albedo. Hobbs

et al. (1997) uses different values for the smoke optical properties based on more

recent observations, but the same values for cloud fraction, surface albedo, etc.

The Hobbs et al. (1997) values of C are 37Wm-2 for ocean and 25 Wm-2 land. The

middle three columns of Table 1 list the error estimates in units of Wm-2 after

applying Equation 7 to the uncertainties in optical thickness units and using the

Hobbs et al. (1997) values for C.  The analysis suggests that MODIS remote

sensing of aerosol will be able to determine the smoke aerosol forcing in the

Southern Hemisphere only to ±2.1 Wm-2.

The uncertainty can also be expressed as a relative error given by ∆τ/τ

(8)

where Fi is the forcing histogram  (Equation 4), fi the optical thickness histogram

(Equation 3), τi the optical thickness of the histogram bin and ∆τi the uncertainty

∆τ
τ

=
∆τ i
τ ii

� Fi =
∆τ i fi

i
�

τmean
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for τi as given by Equations 1 or 2.  τmean is defined as

(9)

Southern Hemisphere August values for τmean are 0.21 for the land and 0.08 for

the ocean.  The relative errors given in percentage units are shown in the last

three columns of Table 1.  In percentage units we see that we can expect to

determine smoke aerosol forcing in the Southern Hemisphere to only ±60%.

The results in Table 1 are based on theoretical estimates of uncertainty

associated with making individual retrievals as applied to the August mean

transport model distribution of smoke optical thickness.  The largest uncertainty

is introduced by errors in determining the surface reflectance, both in an absolute

and a relative sense.  Substantial error is also introduced in the τ dependent error

over land.  As discussed in Section 2.0, field experiment data suggest the

theoretical estimates of retrieval uncertainty are conservative and that we may

expect improvements in exactly the types of error contributing the greatest

values of uncertainty to Table 1.  Preliminary validation of the MODIS

algorithms also supports a more optimistic view.

Table 2 lists the more optimistic values of expected uncertainty based on

τmean = τ i fi
i
�
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empirical estimates (Equations 2).  The results based on Equation 2 reduce the

uncertainty of estimating smoke forcing in the Southern Hemisphere from ±2.1

Wm-2 and ±60% to ±1.2 Wm-2 and ±29%.  Most of the improvement is due to

reducing the errors introduced by uncertainty in the ocean surface reflectance

and in estimating background aerosol.

The largest remaining uncertainty is due to errors in the over land

algorithm.  There is a possibility that in an ensemble of retrievals over different

surface types the land surface reflectance error may be further reduced.

7.0 Sensitivity to transport model

In the preceding sections a specific aerosol transport model (Model 1)

reported by Tegen et al. (1997) provided the only distributions of aerosol optical

thickness used in the analyses.  How sensitive are the preceding estimates of

uncertainty to the choice of transport model?  We explore this issue by

performing a similar analysis using a different model.  Model 2 (Ghan et al.,

2001abc) couples a general circulation model (GCM) with a tropospheric

chemistry model becoming a global chemistry model (GChM).  Models 1 and 2

have independent parameterizations governing aerosol transformation and

removal.

One of the major differences between Model 1 and Model 2 is that Model

2 does not separate organic and black carbon aerosol thickness from the total



24

aerosol optical thickness. Model 2 treats a variety of aerosol components in the

accumulation mode: sulfate, organic carbon, black carbon, MSA, seasalt, soil

dust, and water. In addition, Model 2 treats separate coarse dust and seasalt

modes. The total aerosol depth is the sum of the accumulation and the two coarse

modes.  There is also an ultrafine mode, but its contribution is negligible.

Because the aerosol components for each mode are assumed to be internally

mixed, it is not possible to separate the contributions of each aerosol component

to the total optical depth.  Smoke aerosol optical thickness is therefore combined

with other aerosol types under the category of accumulation mode aerosol

optical thickness.  We are forced to assume that accumulation mode optical

thickness in Model 2 output is equivalent to smoke optical thickness.  By

comparing Model 2 optical thicknesses in biomass burning source regions with

AERONET sunphotometer data, we find the same under prediction found when

comparing Model 1 (Figure 2) and we adjust the Model 2 data by the same

multiplicative factors.

Following the same procedure as in Section 4.0 we construct histograms

from the Model 2 data set.  Figure 5 compares the aerosol optical thickness

histograms (fi) of the two transport models.  The two models produce different

distributions of aerosol optical thickness. Overall, Model 2 produces higher

optical thickness in the Southern Hemisphere than does Model 1.  The mean

accumulation mode τ for Model 2 is 0.28 over land and 0.14 over ocean.  This
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compares with mean smoke τ of 0.21 over land and 0.08 over ocean in Model 1.

However, for a fair comparison we should compare accumulation mode aerosol

in both models and combine smoke with sulfate in Model 1.  The combined

accumulation mode aerosol consisting of smoke plus sulfate in Model 1 gives

mean τ of only 0.24 over land and 0.10 over ocean. Thus, Model 1 and Model 2

produce different aerosol optical thickness distributions.

Figure 6 shows the cumulative histogram constructed from Model 2

output.  Virtually all the data exceed the threshold values of τ=0.10 over land and

τ=0.05 over ocean that were established in Section 4.0.  Specifically, weighting the

data by percentage of aerosol forcing found over land and ocean, respectively,

we find that 97% of the Southern Hemisphere aerosol forcing will be above noise

levels of the MODIS retrieval.

Tables 3 and 4 give the estimated uncertainties using Model 2.

Comparing Tables 3 and 4 to Tables 1 and 2 show little substantial difference in

absolute uncertainty between choice of transport model, even when the transport

models resolve different parameters and result in different mean optical

thicknesses.  Model 2 has consistently lower relative errors because it has a

greater mean optical thickness not because it has lower absolute error.

8.0 Cloud Issues

Clouds present  several difficulties.  First of all, cloud contamination in the

aerosol retrievals cannot be completely eliminated by cloud masking.  This error
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contributes to the total uncertainty, but unlike the random errors presented in

Tables 1-4, cloud contamination error creates a bias to higher aerosol optical

thickness.  In addition, even if the cloud mask perfectly eliminates cloud

contamination, an opposite bias may occur.   The aerosol near clouds or heavy

aerosol masquerading as clouds may be thrown out by the cloud mask and

ignored.   These uncertainties are difficult to quantify, and at this time without

having validation for the MODIS cloud mask we choose to do our analysis

ignoring cloud mask uncertainties, rather than inventing their values.  However,

our results will be affected by the uncertainties we ignore.

Furthermore, the models in this study disregard cloud cover when they

report the aerosol optical thickness.  The models report optical thickness even in

overcast conditions, when the satellites are unable to make retrievals.  Figure 7

shows the mean cloud fraction for August calculated using the 11-year

International Satellite Cloud Climatology Project (ISCCP) D2 data plotted against

model-derived optical thickness.  Cloud cover over the Southern Hemisphere is

significant.  However, the smokiest regions correspond to the least cloudy areas.

Satellites will observe the majority of smoke forcing with a minimal amount of

cloud interference.  Furthermore, on any given day there are clear spots between

clouds and retrievals are made.  Model 1 has a spatial resolution of 4 by 5

degrees.  The MODIS spatial resolution is 250-500 km, almost assuring sufficient

retrievals to determine a representative mean optical thickness for every model

grid square.  Over the course of a month, monthly mean spatial patterns of
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satellite-derived aerosol should agree well with monthly mean model results,

despite the different way in which clouds are handled.

9.0 Discussion and Conclusions

Global distributions of aerosol optical thickness produced by transport

models enable us to estimate the range of uncertainty we should expect from

satellite remote sensing of aerosol direct forcing at the top of the atmosphere.

Specifically we put the MODIS aerosol retrievals to the test and limit our study to

biomass burning aerosol in the Southern Hemisphere.  We want to know how

much of the smoke forcing will be above the retrievals’ noise level and how well

we will be able to estimate the Southern Hemisphere smoke forcing.

Roughly between 85- 97% of the smoke forcing will occur in areas above

noise level.

Even so, we will only be able to determine clear sky direct smoke aerosol

forcing to within 1.2-2.2 Wm-2 (16-60%) depending on the uncertainty of our

retrievals.  The larger uncertainty corresponds to theoretical estimates of retrieval

accuracy and of background aerosol.  The smaller uncertainty corresponds to

estimates of retrieval accuracy based on empirical evidence from field

experiments and an estimate of background aerosol based on auxiliary

information.  Preliminary validation of actual MODIS retrievals strongly

suggests the smaller uncertainty, especially in an ensemble average over several

observations.
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Uncertainty from cloud contamination remains an unknown factor, and is

not included in these calculations.

The range of absolute uncertainty appears not to be sensitive to the choice

of transport model used to estimate the global distribution of smoke aerosol.

However, the range of relative error does depend on the choice of transport

model if one model produces a generally hazier atmosphere than the other.

How can we further reduce these uncertainties?  By using satellite remote

sensing to directly measure aerosol radiative fluxes rather than first retrieving

aerosol optical thickness, much of the τ-dependent error will be eliminated.  Note

that this can also be achieved by using the same aerosol optical properties to

calculate the forcing as were used to retrieve the optical thickness from the

satellite data (Kaufman and Tanré, 2001).  However, the contribution from

uncertainty in estimating background and surface reflectance remains.  Just the

surface uncertainties alone will account for errors of 0.7-1.6 Wm-2 (11-48%).

However, the excellent validation we are obtaining from the MODIS algorithms,

both over land and ocean, strongly suggests that even the errors associated with

surface assumptions are both smaller than expected and random (Chu et al.,

2001; Ichoku et al., 2001; Remer et al. 2001).  Over time, these random errors of

the MODIS retrievals may reduce to statistically insignificant values.  Further

validation efforts are needed before such a hypothesis can be verified.

In addition, a subject not explored here is the use of multiple satellite

sensors working in concert to reduce uncertainties.  For example, using MODIS



29

along with the Clouds and Earth’s Radiant Energy System (CERES) broadband

fluxes will reduce uncertainties due to narrow to broadband conversions and

multiple channel calibration issues.  Still the lessons learned by this exercise

apply to CERES as well.  Separating smoke from background aerosol and

estimating the surface contribution will remain an issue even for this broadband

instrument.

In this study we have demonstrated the strengths and weaknesses of

using satellite remote sensing as a tool for determining global aerosol radiative

forcing at the top of the atmosphere. We see that satellites do best in regions of

high aerosol loading, but the vast areas of low aerosol optical thickness introduce

uncertainties in the determination.  Further reduction of uncertainties calls for a

strategy that utilizes a combination of satellite remote sensing with ground-

based remote sensing and global transport models to reduce the uncertainty in

the effects of the background aerosol and the surface reflective properties.  Such

an assimilated approach will be necessary to realize the full potential of satellite

remote sensing.
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Figure Captions

Figure 1. Southern Hemisphere distribution of simulated August monthly mean

smoke optical thickness (top) and retrieval signal-to-noise ratio (τ/∆τ) based on

Equations 1 and applied to the August monthly mean results.   Data is derived

from Model 1 (Tegen et al., 1997).

Figure 2.  Comparison of monthly mean values of optical thickness at 550 nm

derived from transport model results (Tegen et al., 1997) with values observed by

AERONET stations near biomass burning source regions in the Southern

Hemisphere. Also shown by black dots are the August mean values of Model 2

(Ghan et al. 2001abc) for all the stations. The top figure shows the data grouped

by observing station.  The bottom figure shows the data grouped by months.

Note the different scales on the x and y axes.  The solid line represents where the

model and observations would be in perfect agreement.

Figure 3.  Standard deviation about the monthly mean aerosol optical thickness



38

plotted against the monthly mean.  The standard deviations and monthly means

are calculated from daily mean values for AERONET stations near biomass

burning source regions.

Figure 4.  Cumulative histogram of the smoke aerosol forcing in the Southern

Hemisphere for August as function of aerosol optical thickness and divided into

land and ocean components.  Values of smoke direct radiative forcing following

Hobbs et al. (1997) and corresponding to the aerosol optical thickness bins, are

shown along the top. Arrows indicate percentage of smoke forcing occurring in

grid squares above specified smoke aerosol optical thickness thresholds.

Histograms calculated from Tegen et al. (1997) data.

Figure 5.  Aerosol optical thickness frequency histograms over land (top) and

ocean (bottom) of the simulated Southern Hemispheres during August for two

aerosol transport models.  Model 1 is Tegen et al. (1997), which separates smoke

from sulfate aerosol.  Model 2 is Ghan et al. (2001abc), which combines these two

aerosol types into a category labeled accumulation mode.  The Southern

Hemisphere mean aerosol optical thickness (τ) is given in each category.

Figure 6.  Model 2 cumulative histogram of the accumulation mode aerosol

forcing in the Southern Hemisphere for August as function of the aerosol optical

thickness and divided into land and ocean components.  Arrows indicate
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percentage of smoke forcing occurring in grid squares above specified smoke

aerosol optical thickness thresholds.  Histogram derived from Ghan et al.

(2001abc) simulated data.

Figure 7.  Cloud fraction plotted against smoke aerosol optical thickness of the Southern

Hemisphere.  Cloud fraction is calculated from the International Satellite Cloud

Climatology Project (ISCCP) D2 11 year mean August data.  Smoke aerosol optical

thickness values derived from the simulation of Tegen et al. (1997).  Data has been sorted

according to aerosol optical thickness, divided into aerosol optical thickness bins and

then mean cloud fraction calculated for each bin.
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Table 1 Uncertainty in estimating smoke aerosol forcing in the Southern Hemisphere
from MODIS aerosol optical thickness using theoretical estimates of retrieval
uncertainty, upper bound of background uncertainty and Model 1.

optical thickness units radiative flux (Wm-2) relative error (%)
Land Ocean S.H. Land Ocean S.H. Land Ocean S.H.

background 0.027 0.027 0.027 0.7 1.0 0.9 13 36 26
surface 0.05 0.05 0.05 1.3 1.8 1.6 23 66 48
τ dependent 0.09 0.01 0.04 2.3 0.4 1.2 42 13 25
rmse
combined

0.11 0.06 0.07 2.7 2.1 2.1 50 76 60

Table 2 Uncertainty in estimating smoke aerosol forcing in the Southern Hemisphere
from MODIS aerosol optical thickness using empirical estimates of retrieval uncertainty,
lower bound of background uncertainty and Model 1.

optical thickness units radiative flux (Wm-2) relative error (%)
Land Ocean S.H. Land Ocean S.H. Land Ocean S.H.

background 0.01 0.01 0.01 0.3 0.4 0.3 5 13 10
surface 0.05 0.01 0.03 1.3 0.4 0.7 23 13 17
τ dependent 0.07 0.01 0.04 1.8 0.4 0.9 33 13 21
rmse
combined

0.09 0.02 0.05 2.2 0.6 1.2 40 23 29

Table 3 Uncertainty in estimating smoke aerosol forcing in the Southern Hemisphere
from MODIS aerosol optical thickness using theoretical estimates of retrieval
uncertainty, upper bound of background uncertainty and Model 2.

optical thickness units radiative flux (Wm-2) relative error (%)
Land Ocean S.H. Land Ocean S.H. Land Ocean S.H.

background 0.027 0.027 0.027 0.7 1.0 0.9 10 19 15
surface 0.05 0.05 0.05 1.3 1.8 1.6 18 35 28
τ dependent 0.10 0.01 0.04 2.4 0.4 1.2 20 5 11
rmse
combined

0.11 0.06 0.07 2.8 2.1 2.2 28 40 39
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Table 4 Uncertainty in estimating smoke aerosol forcing in the Southern Hemisphere
from MODIS aerosol optical thickness using empirical estimates of retrieval uncertainty,
lower bound of background uncertainty and Model 2.

optical thickness units radiative flux (Wm-2) relative error (%)
Land Ocean S.H. Land Ocean S.H. Land Ocean S.H.

background 0.01 0.01 0.01 0.3 0.4 0.3 4 7 6
surface 0.05 0.01 0.03 1.3 0.4 0.7 18 7 11
τ dependent 0.07 0.01 0.04 1.8 0.4 0.9 15 5 9
rmse
combined

0.09 0.02 0.04 2.2 0.6 1.2 23 11 16
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Figure 2.  Comparison of monthly mean values of optical thickness at 550 nm derived
from transport model results (Tegen et al., 1997 ) with values observed by AERONET
stations near biomass burning source regions in the Southern Hemisphere.  Also shown
by black dots are the August mean values of Model 2 (Ghan et al. 2001abc) for all the
stations.  The top figure shows the data grouped by observing station.  The bottom figure
shows the data grouped by months.  Note the different scales on the x and y axes.  The
solid line represents where the model and observations would be in perfect agreement.
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Figure 3.  Standard deviation about the monthly mean aerosol optical thickness plotted
against the monthly mean.  The standard deviations and monthly means are calculated
from daily mean values for AERONET stations near biomass burning source regions.
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Figure 4.  Cumulative histogram of the smoke aerosol forcing in the Southern
Hemisphere for August as function of aerosol optical thickness and divided into land and
ocean components.  Values of smoke direct radiative forcing following Hobbs et al.
(1997), and corresponding to the aerosol optical thickness bins, are shown along the top.
Arrows indicate percentage of smoke forcing occurring in grid squares above specified
smoke aerosol optical thickness thresholds.  Histogram derived from Tegen et al. (1997)
simulated data.
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Figure 5.  Aerosol optical thickness frequency histograms over land (top) and ocean
(bottom) of the simulated Southern Hemispheres during August for two aerosol transport
models.  Model 1 is Tegen et al. (1997), which separates smoke from sulfate aerosol.
Model 2 is Ghan et al. (2001abc), which combines these two aerosol types into a category
labeled accumulation mode.  The Southern Hemisphere mean aerosol optical thickness
(τ) is given in each category.
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Figure 6. Model 2 cumulative histogram of the accumulation mode aerosol forcing in the
Southern Hemisphere for August as function of aerosol optical thickness and divided into
land and ocean components.  Arrows indicate percentage of smoke forcing occurring in
grid squares above specified smoke aerosol optical thickness thresholds.  Histogram
derived from Ghan et al. (2001abc) simulated data.
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Figure 7.  Cloud fraction plotted against smoke aerosol optical thickness of the Southern
Hemisphere.  Cloud fraction is calculated from the International Satellite Cloud
Climatology Project (ISCCP) D2 11 year mean August data.  Smoke aerosol optical
thickness values derived from the simulation of Tegen et al. (1997).  Data has been sorted
according to aerosol optical thickness, divided into aerosol optical thickness bins and
then cloud fraction calculated for each bin.
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